• Skip to primary navigation
  • Skip to main content
  • Skip to primary sidebar
  • Excelitas Qioptiq banner

BATTLESPACE Updates

   +44 (0)77689 54766
   

  • Home
  • Features
  • News Updates
  • Defence Engage
  • Company Directory
  • About
  • Subscribe
  • Contact
  • Media Pack 2023

UNMANNED SYSTEMS UPDATE

September 4, 2015 by

04 Sep 15. Warsaw University of Technology & Lockheed Martin Conclude UAS Research. The Warsaw University of Technology (WUT) and Lockheed Martin celebrated the successful conclusion of a joint advanced applied research program focused on the integration between manned and unmanned airborne platform systems. The program builds on the strong industrial and academic partnership between Poland and Lockheed Martin aimed at motivating young Polish engineers to address tomorrow’s defense and industrial needs.
The goal of the team’s “Optimizing Unmanned System of Systems” (OpUSS) project was to develop new methods to optimally manage the multiple, different systems used in aircraft and ground stations simultaneously toward a common mission. The WUT team’s research was presented in June 2015 at the prestigious conference of the American Society of Aeronautics and Astronautics (AIAA) in Dallas, Texas, and the team’s three associated academic works were formally published by AIAA.
Prof. Janusz Narkiewicz, head of WUT’s Department of Automation and Aeronautical Systems, congratulated the team on a job well done. “In addition to strengthening the relationship between WUT, Polish academia and Lockheed Martin, the [WUT] team’s findings represent a significant contribution to the field of unmanned systems research,” said Prof. Narkiewicz. “We are very pleased with this team’s work and the outcome of this important project.”
Lockheed Martin assisted in the enhanced development of WUT’s unmanned airborne platform assets and simulation systems and supported the software development used during the research project. (Source: UAS VISION)

04 Sep 15. Invisible cloak for military UAS. Scientists are working on creating a new design for a technology that redefines what the public views as imaginary. Inspired by the well-known Invisibility Cloak from Harry Potter, electrical engineers at the University of California, San Diego have created a new design for their cloaking device, using a Teflon substrate, studded with cylinders of ceramic, that is thinner than any prior development and does not alter the brightness of light around concealed objects.
The Teflon has a low refractive index, while the ceramic’s refractive index is higher, which allows light to be dispersed through the sheet without any absorption. Compared to an invisibility cloak, this technology has not only the ability to conceal, but the ability to increase optical communication signal speed and to collect solar energy.
The goal of this design is to create devices that make any object appear invisible by scattering the electromagnetic waves, such as light and radar, off an object making it less detectable to these wave frequencies. Metamaterial that surrounds the target is able to force light to bypass a region of space, which effectively “cloaks” the object, making it isolated from incoming electromagnetic waves.
Prior developments to this technology needed many layers in order to cover an object, resulting in a very thick layer that enclosed the object. With this new, super- thin design, this technology has the capability to better hide the three- dimensionality and shadow of an object. Additionally, this new cloaking device addresses the issue with the brightness of the space behind them. The University of California has achieved a cloak that won’t reduce any intensity when light is reflected so the concealed object will remain undetectable and will appear completely flat to an observer’s eyes.
“Invisibility may seem like magic at first, but its underlying concepts are familiar to everyone. All it requires is a clever manipulation of our perception,” said Boubacar Kanté, a professor in the Department of Electrical and Computer Engineering at the UC San Diego Jacobs School of Engineering and the senior author of the study. “Full invisibility still seems beyond reach today, but it might become a reality in the near future

Primary Sidebar

Advertisers

  • qioptiq.com
  • Exensor
  • TCI
  • Visit the Oxley website
  • Visit the Viasat website
  • Blighter
  • SPECTRA
  • Britbots logo
  • Faun Trackway
  • Systematic
  • CISION logo
  • ProTEK logo
  • businesswire logo
  • ProTEK logo
  • ssafa logo
  • Atkins
  • IEE
  • EXFOR logo
  • DSEi
  • sibylline logo
  • Team Thunder logo
  • Commando Spirit - Blended Scoth Whisy
  • Comtech logo
Hilux Military Raceday Novemeber 2023 Chepstow SOF Week 2023

Contact Us

BATTLESPACE Publications
Old Charlock
Abthorpe Road
Silverstone
Towcester NN12 8TW

+44 (0)77689 54766

BATTLESPACE Technologies

An international defence electronics news service providing our readers with up to date developments in the defence electronics industry.

Recent News

  • EXHIBITIONS AND CONFERENCES

    March 24, 2023
    Read more
  • VETERANS UPDATE

    March 24, 2023
    Read more
  • MANAGEMENT ON THE MOVE

    March 24, 2023
    Read more

Copyright BATTLESPACE Publications © 2002–2023.

This website uses cookies to improve your experience. If you continue to use the website, we'll assume you're ok with this.   Read More  Accept
Privacy & Cookies Policy

Privacy Overview

This website uses cookies to improve your experience while you navigate through the website. Out of these, the cookies that are categorized as necessary are stored on your browser as they are essential for the working of basic functionalities of the website. We also use third-party cookies that help us analyze and understand how you use this website. These cookies will be stored in your browser only with your consent. You also have the option to opt-out of these cookies. But opting out of some of these cookies may affect your browsing experience.
Necessary
Always Enabled
Necessary cookies are absolutely essential for the website to function properly. This category only includes cookies that ensures basic functionalities and security features of the website. These cookies do not store any personal information.
Non-necessary
Any cookies that may not be particularly necessary for the website to function and is used specifically to collect user personal data via analytics, ads, other embedded contents are termed as non-necessary cookies. It is mandatory to procure user consent prior to running these cookies on your website.
SAVE & ACCEPT